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Abstract

Artificial intelligence (AI) has been a transformational force in higher education
today, providing new opportunities to differentiate instruction to meet individual
learning needs. Despite the creation of multiple online platforms, digital assess-
ments and automated feedback systems, many universities still use traditional,
uniform teaching practices that do not cater for different learner backgrounds,
motivations and cognitive preferences. Although AI-powered personalization is
widely acknowledged as an exciting solution, empirical evidence on how well it
works, especially in real classroom settings and in developing regions is scarce.
This study addresses this gap by assessing the impact of an AI-based adaptive
learning system that dynamically aligns the instructional content according to the
performance trend, pace of learning and engagement behaviors of the students.
The research will be conducted using a mixed-methods methodology, which
will combine performance metrics and analytics, tailored content recommenda-
tions, engagement metrics, and surveys of student perceptions to analyze both the
quantitative increase in learning outcomes and qualitative information about the
perceptions of the learner. Findings show that AI-powered personalization has an
important impact on improving academic performance, engagement, and be well
received by students as supportive and accessible. The study adds to the practical
and theoretical implications for the institutions who are interested in incorporating
adaptive learning technologies, providing evidence-based recommendations for
effective adoption in higher education settings.
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1 Introduction

Artificial intelligence has become an important component of modern educational systems, where
universities are starting to use intelligent tools to support education and learning. The fast development
of online courses, digital tests, and automated evaluation services have opened new possibilities to work
with each student in accordance with their needs. In this growing digital environment, the concept of
AI-controlled personalization has become an exciting potentially successful method of matching learning
content to each student, their learning rate, level of performance, and learning needs. This development is
of particular significance in higher education, where students frequently vary widely in their background
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knowledge, motivation and learning styles, and it is therefore difficult for instructors to implement a
uniform teaching methodology.

Even with these new innovations, there are still numerous learning settings that make use of the traditional,
one-size-fits-all model of instruction. Such methods may not be absolutely supporting for the learners
who need more guidance or need different explanations. Current research also indicates that in addition
to the growing spotlight placed on adaptive learning platforms, there is a gap in knowledge on how
effective AI-based personalization truly is in actual classroom settings. In many contexts, particularly
in developing regions, there is little empirical evidence of whether such systems are really improving
learning outcomes, engagement and student satisfaction. Such ambiguity presents a practical and
academic dilemma to the institutions that want to implement AI technologies in their curriculum.

This paper aims to fill this gap by focusing on the impact of AI-induced content personalization on
student learning performance at the higher education level. The research investigates the quantitative
gains in student learning results and qualitative information of student views on adaptive learning
tools. The proposed approach involves the combination of performance tracking, personalized content
recommendations, and student feedback to assess the effectiveness of the system.

The objectives of this research are as follows:

• To identify the key challenges and gaps in traditional learning practices within higher education.
• To develop an AI-based adaptive learning approach tailored to individual student needs.
• To assess the effectiveness of personalized learning using performance data, engagement indicators,

and student feedback.
• To examine students’ perceptions and acceptance of AI-driven personalized learning tools.
• To provide recommendations for integrating adaptive learning systems into higher-education environ-

ments.

This paper is divided into several sections. The literature review is a presentation of relevant studies on
AI in education and adaptive learning. The methodology is used to describe the research design and
the data collection process. The proposed framework describes the personalization mechanism that was
utilized in this study. The results and discussion sections interpret the results and the paper ends with
recommendations for future research.

2 Literature Review

Recent research on artificial intelligence in higher education indicates that AI can be used to support
personalized and adaptive learning. Systematic reviews indicate that properly designed AI systems
have the potential to enhance cognitive and satisfaction among learners over non-adaptive interventions,
although many of them report small sample sizes and brief treatments to the detriment of limited studies
and interventions[1].

Studies which focus on pedagogy stress on how personalization is as much a pedagogical challenge as it is
a technical one. Personalization needs to be consistent with learning theories such as constructivism and
needs to take into account student profiles, learning paths and assessment strategies. Educators should
be able to analyze the analytics and modify teaching based on the analysis of the analytics results [2].
Other analyses detail how AI personalizes materials and feedback; they mention that AI does not displace
teachers but reassigns them to the role of mentor, interpreting and coordinating data, and pointing at the
issue of teacher preparation, digital inequality and school infrastructures[3].

Recent advances show the usage of AI techniques in supporting personalization. Sharif and Uckelmann
present a multimodal framework where they apply reinforcement learning and multimodal streams of
data to give privacy conscious feedback and show that it can be effective in enhancing adaptive learning
[4]. Murtaza et al. survey the field of AI based e learning systems, their requirements, challenges as
well as their modular architectures, identifying open research questions addressing content tailoring [5].
Essa, Celik and Human-Hendricks review the machine learning methods for identifying learning styles
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and observe an increasing interest in neural networks and a need for more empirical comparison studies
[6]. Pardamean and colleagues come up with a collaborative filtering model based on which students are
recommended relevant materials depending on their styles and report better learning results [7].

At the model level, deep learning is being used to predict learner performance and recommend person-
alized content sequences. Naseer et al. integrate deep learning with learning analytics to recommend
content and observe improvements in achievement and satisfaction; they caution about data quality, model
interpretability and the risk of reinforcing performance gaps [8]. At this larger level, Strielkowski and
colleagues associate adaptive learning technologies with sustainability ambitions citing that AI has the
potential to enhance efficiency and widen access with the concern of algorithmic transparency, privacy,
and extended institutional capacity[9].

The adaptive learning analytics research also demonstrates the possibilities of AI to enhance the perfor-
mance of students. Khosravi and co.-authors create an adaptive learning analytics framework coupled
with an intelligent tutoring system and evaluate it across a variety of courses. They discover that AI
generated feedback enhances mastery, particularly in the case of learners that tend to perform below
average, and emphasize the importance of providing explainable advice to establish trust in students [10].

All these studies emphasize the idea that AI-based personalization may enhance student interaction,
modify teaching in real-time, and assist data-driven learning processes, but they also emphasize that
clear algorithms, well-thought-out pedagogy, and continuous assessment are necessary to make the
implementation of personalization in higher educational institutions effective and fair.

Evidence from diverse contexts is emerging to suggest that achievement gaps can be reduced and varied
learners served by adaptive learning. Wong et al. consider the adaptive system in the first-year classes
and discover that the individualized pace and hints result in higher grades, especially in students with
less previous knowledge [11]. A large scale systematic review by Zawacki-Richter and colleagues finds
adaptive learning and predictive analytics to be the two most impactful forms of AI application and finds
that to realise these benefits institutions need to invest in digital readiness and teacher training [12].

The recommendation literature shows that AI based systems can provide more accurate feedback when
they combine techniques such as clustering and deep learning. Romero and Ventura review educational
data mining algorithms and conclude that hybrid models outperform simpler rule-based approaches [13].
Harley et al. develop a taxonomy for emotion-aware learning technologies, showing that detecting and
responding to learners’ emotional states can enhance engagement and learning effectiveness, providing
a foundation for integrating affective analytics into tutoring systems [14].

Research on intelligent tutoring systems continues to be central to personalization. Nye traces the evo-
lution of these systems and shows that recent platforms incorporate deep learning and reinforcement
learning to approximate human tutors in complex skill acquisition [15]. Widono et al. propose a
framework for designing personalized learning systems in outcome-based education, using data-driven
modelling, machine learning, and natural language processing to generate individualized learning trajec-
tories and support continuous learner monitoring [16]. Sibley et al. investigate how students’ academic
self-concept and prior knowledge influence the effectiveness of generating technology-mediated expla-
nations; they find that students with stronger self-concepts and more prior knowledge benefit more,
suggesting that personalization should account for individual cognitive and motivational factors [10].

Ethical considerations remain paramount. Doroudi and Brunskill examine fairness and equity in adaptive
learning, warning that personalization can unintentionally reinforce inequalities if algorithms are poorly
designed [17]. They urge researchers to evaluate personalization through ethical and fairness lenses,
especially in high stakes educational settings. Overall, the increasing number of published works
demonstrate that AI based personalization, no matter how well implemented, can only be successful if
it is based on appropriate pedagogy, transparent and fair algorithms, teacher readiness, and institutional
capacity. A brief comparison between the most relevant recent studies in terms of methodology, datasets
and identified weaknesses is given in Table 1.
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Table 1: Compact Summary of Key Recent Studies on Personalized AI-Based Learning
Study Methodology Dataset Weaknesses
Sharif and Uckel-
mann (2024) [4]

Reinforcement
learning with mul-
timodal learning
analytics

Small university-
level multimodal
dataset

Limited generalizability;
privacy constraints restrict
data richness; RL model
sensitive to reward tuning.

Murtaza et al.
(2022) [5]

Systematic survey
and architectural
analysis of AI-based
personalized e-
learning systems

No empirical
dataset (survey-
based)

Lacks experimental vali-
dation; recommendations
not tested on real learners;
broad scope leads to uneven
depth.

Essa et al. (2023)
[6]

Systematic review
of ML techniques
for learning-style
prediction

Reviewed datasets
from prior ML
studies

Insufficient comparative
empirical studies; limited
evidence on deep learning
effectiveness; inconsis-
tencies across reviewed
datasets.

Naseer et al. (2024)
[8]

Deep learning inte-
grated with learning
analytics for content
sequencing

LMS log data from
higher-education
courses

Model interpretability is-
sues; heavy dependence on
data quality; risk of re-
inforcing existing learning
gaps.

Widono et al.
(2024) [16]

Predictive mod-
elling, NLP, and
analytics for per-
sonalized OBE
pathways

Institutional aca-
demic records and
learner submis-
sions

Framework not tested at
scale; NLP components
limited to simple use
cases; lacks long-term per-
formance evaluation.

3 Methodology

This research uses a mixed-methods research design to assess how AI-driven content personalization can
be used in higher education. The methodology combines the quantitative learning performance measures
with the qualitative perceptions of students, which can provide an overall knowledge of the impact of
adaptive learning models on the educational experience. The approach is organized in five major parts:
research design, participants, AI personalization system, data collection procedures, and data analysis
techniques.

3.1 Research Design

A quasi-experimental design was adopted to compare two groups of students, namely, a control group
involved in traditional instruction and an experimental group using an AI-driven personalized learning
system. The design allows differences in learning outcomes to be assessed, controlling for confounding
variables such as course content, instructor and assessment format. The implementation of the study was
conducted for an entire academic term in order to have sufficient exposure to the personalised learning
environment and to obtain meaningful behavioural and performance data.

The mixed-methods approach was chosen because of its potential to merge performance metrics with
student perspective. Quantitative data collection measures gains in academic performance and activity
and qualitative data obtain information about the experiences of students in the practice of personalization.
This intersection is critical to the comprehension of not only the effectiveness of AI-led personalization,
but also its form and reason as an influence on student learning.
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Participants were undergraduate students who were enrolled in a core course at a higher education
institution. A total of 120 students participated in the study that includes 60 students in the experimental
group and 60 students in the control group. The assignment was based on existing class sections so as
not to disrupt the course schedule. Respondents had various levels of experience using digital learning
tools, academic background and learning abilities. To assure ethical compliance, students were informed
of study goals, procedures of data collection and confidentiality measures. Participation was voluntary
and students could choose not to take part in the study at any stage and were not penalised academically.

3.2 AI Personalization System

The artificial intelligence personalization system created in the context of the current research combines
three major elements that collaborate to create personalized learning trajectories, learning modeller,
adaptive content recommender, and performance tracker. The system is continuously gathering student
interaction data such as responses to quizzes, amount of time spent on activities, navigation pattern,
etc. Based on these inputs, it processes these to estimate the evolving knowledge state of each learner.
The learner profile is updated in real time with a machine learning model that can detect the areas of
strengths, challenge and possible misconceptions.

Based on the current model of learners, the adaptive content mechanism searches for appropriate learning
materials from a structured content bank. These resources contain videos, explanation of reading, practice
tasks which differ in complexity. The recommendation logic takes variables such as semantic similarity
between content items, estimated cognitive load, and the learner’s performance in the past to determine
the best order of instructional items. The system is dynamic in having the learning path adjusted as the
students advance, which means that every next activity corresponds to the readiness level of the learner
and can facilitate the gradual acquisition of knowledge.

In parallel, the performance monitoring component gives automated feedback to both students and
instructors. Students are provided with visual cues of where they are in their mastery and next steps for
them to take, as well as reminders to return to difficult areas. Instructors are given aggregated analytics,
including trends in mastery of topics and summaries of engagement, that can help them identify learners
that need to be targeted with support. Together these components constitute a closed-loop adaptive
learning cycle, through which learner behaviour is continuously evaluated and recommendations updated
to increase levels of personalization.

To illustrate the structure of the system, Table 2 summarizes the main functions performed by each
component of the AI-driven personalization framework.

Table 2: Components of the AI Personalization System
Component Description
Learner Modelling Tracks student knowledge state, learning speed, and

performance trends using machine learning models.
Content Recommendation Selects and sequences learning materials based on

difficulty estimation, semantic similarity, and learner
readiness.

Performance Monitoring Provides automated feedback, mastery indicators,
and analytics dashboards for both learners and in-
structors.

3.3 Data Collection

Data collection for this study focussed on three main dimensions: academic, behavioural engagement and
student perceptions. Academic performance data was collected using a pre-test given at the start of the
course and a post-test at the end of the course. The tests assessed conceptual knowledge, problem-solving
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skill, and use of course materials. The scores obtained were used as a basis to measure learning gains
between the control and experimental groups.

The learning platform generated activity logs which provided the data on behavioural engagement. These
records included data like how much time students dedicated to learning resources, how many activities
students finished, how frequently they had to review learning material, and how they went through
suggested learning paths. These indicators generated by the system offered objective data of the way the
students engaged in the individualized learning setting.

Student perceptions were gathered by using structured questionnaire distributed at the end of the study.
The survey included items on perceived usefulness, ease of use, satisfaction and clarity of the personalised
recommendations. A minor fraction of the survey was supplemented by the short interviews with the
students to provide more qualitative information about their experience with the AI-driven system.

To illustrate the collected data, Table 3 presents a sample of anonymized data points used in the analysis.
These values demonstrate the structure of the dataset and the types of indicators extracted during the
study.

Table 3: Sample of Collected Data Points
Student ID Pre-Test Post-Test Engagement Score Satisfaction (1–5)

S12 56 78 0.64 4
S27 49 72 0.58 5
S41 62 84 0.71 4
S53 51 69 0.47 3

In addition, Figure 1 provides a visualization of engagement levels across a subset of students. This plot
demonstrates how the data collected through system logs were used to observe behavioural differences
between learners with higher and lower performance improvements.
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Figure 1: Engagement scores collected from system logs for sample students.

In general, the quantitative measurements of performance, the behavioural metrics provided by the
system, and the qualitative data of perception formed a complete picture of assessing the efficiency of
AI-based personalized learning.

3.4 Data Analysis

To compare the difference in learning gain and engagement between the two groups, quantitative data
analysis was done using descriptive statistics, paired-sample t-tests, independent-sample t-tests, and
analysis of variance (ANOVA). Effect sizes were calculated to determine the magnitude of differences
that were observed. Engagement metrics were analyzed with the help of the correlation analysis to find
the relationship between system usage and performance outcomes.
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Qualitative data from interviews were analyzed by using thematic analysis. The coded transcripts were
coded, and the common themes and patterns that occur were identified. The triangulation of quantitative
and qualitative findings enhanced the validity of the conclusions by giving multiple perspectives on the
effectiveness of the AI-driven personalization system.

Overall, the methodology has both an excellent combination of the rigor of experimental controls and
the quality of qualitative information, and it provides a comprehensive assessment of the application of
AI-based personalized learning in higher education.

4 Proposed Framework

The suggested framework combines three AI models which are integrated to work jointly to produce
adaptive and personalized learning pathways. These models describe the changing knowledge state of the
learner, the representations of instructional materials in a hierarchical semantic space, and the optimal
sequence of tasks calculated by using the reinforcement learning. The model has been created as a
closed-loop mechanism: once all the interactions between the student and the models are complete, all
three models update their inner state, and the next learning recommendation can be formulated in a way
that aids the student progression in a specific manner. The three models form the computational backbone
of the system, and each contributes a distinct yet complementary function. The overall workflow of the
proposed adaptive learning framework is illustrated in Figure 2.

Student Interaction Stream

SAKT Learner State

DQN Recommendation Agent

SBERT Content Embeddings

Content Repository

Figure 2: Compact workflow of the proposed adaptive learning framework integrating SAKT, SBERT,
and DQN.

4.1 SAKT Model

The Self-Attentive Knowledge Tracing (SAKT) model estimates the learner’s latent knowledge state
based on historical interactions. Let the observed sequence of question–response pairs up to time 𝑡 be
expressed as

𝑋𝑡 = {(𝑞1, 𝑎1), (𝑞2, 𝑎2), . . . , (𝑞𝑡 , 𝑎𝑡 )}. (1)
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Each question 𝑞𝑖 is mapped to an embedding 𝑒𝑖 ∈ R𝑑 . The model computes the relevance of past
interactions to the current prediction by applying a scaled attention mechanism:

𝛼𝑖 =
exp(𝑒⊤𝑡 𝑊𝑒𝑖)∑𝑡
𝑗=1 exp(𝑒⊤𝑡 𝑊𝑒 𝑗)

, (2)

where𝑊 is a learnable bilinear projection matrix.

The predicted probability that a learner will answer the next question correctly is given by

𝑝𝑡+1 = 𝜎

(
𝑡∑︁

𝑖=1
𝛼𝑖ℎ𝑖

)
, (3)

where ℎ𝑖 is a hidden representation associated with interaction 𝑖 and 𝜎(·) is the sigmoid function.
The SAKT model therefore identifies which previously encountered concepts influence the learner’s
performance at the next step. This selective attention capability makes SAKT suitable for modeling
irregular and temporally distant dependencies, which are common in educational data.

Under this model, a knowledge vector is created continuously and it represents the learner profile created
by the SAKT model. This is a very necessary vector in personalizing the sequencing of tasks, as two
learners with similar test scores can be very different in their strengths or weaknesses in conceptual
learning. With SAKT built in, the system is assured of all recommendations conditioned on the actual
progression of mastery of the student instead of hypothesized assumptions on the order of learning.

4.2 SBERT Model

Sentence-BERT (SBERT) gives a semantic account of the totality of instructional material. Each content
item 𝑇 of the repository is transformed to an embedding:

𝑣 = SBERT(𝑇). (4)

These embeddings allow task-task conceptual relationships and the system can measure similarity, can
identify prerequisite structure, and predict cognitive difficulty. Estimation of difficulty is calculated
by placing every task relative to the centroid of items that a person has mastered. Given 𝑣mastered, the
semantic difficulty of item 𝑞 is defined as

𝐷 (𝑞) = 1 −
𝑣𝑞 · 𝑣mastered

∥𝑣𝑞 ∥∥𝑣mastered∥
. (5)

Higher values of 𝐷 (𝑞) indicate greater conceptual distance from the learner’s current mastery region.

Along with difficulty estimation, SBERT embeddings enable the system to create an organized structure
of topics, and recommended tasks do not switch directly to unrelated ideas. Pedagogical ordering is
also given through content clustering in such a way that tasks may be ordered in sequence, starting with
foundational and culminating with advanced.

SBERT makes sure that the recommendations given by the system in regard to the task are not arbitrary
but they are related to the cognitive and semantic intimacy. It allows the model to know the difficulty
of an item to a given learner and also gives the semantic basis needed to build useful adaptive learning
sequences.

4.3 DQN Model

The Deep Q-Network (DQN) model performs decision-making and task sequencing. At time 𝑡, the
system forms a composite state

𝑠𝑡 = [𝐾𝑆𝑡 , 𝐷𝑡 , 𝐸𝑡 ], (6)
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where 𝐾𝑆𝑡 is the knowledge-state output of SAKT, 𝐷𝑡 contains SBERT-derived difficulty measures, and
𝐸𝑡 encodes engagement indicators such as time on task and repeated attempts.

The DQN model chooses the next learning item by computing the action that maximizes the estimated
Q-value:

𝑎𝑡 = arg max
𝑎
𝑄(𝑠𝑡 , 𝑎; 𝜃). (7)

After the learner completes the recommended task, the system observes the outcome and generates a
reward signal. The Q-network parameters are updated according to the Bellman equation:

𝑄(𝑠𝑡 , 𝑎𝑡 ) ← 𝑄(𝑠𝑡 , 𝑎𝑡 ) + 𝛼
[
𝑟𝑡 + 𝛾max

𝑎′
𝑄(𝑠𝑡+1, 𝑎

′) −𝑄(𝑠𝑡 , 𝑎𝑡 )
]
. (8)

Through this iterative update process, the DQN learns a policy that balances reinforcement of weak
concepts with the introduction of new challenges. Over time, it converges to a strategy that maximizes
long-term learning gains instead of short-term correctness alone.

The DQN model acts as the core of the personalization engine. It integrates the learner state from SAKT
and the content properties from SBERT to compute the optimal next task. This integration turns the
system into a fully adaptive learning environment, enabling personalized sequencing based on learned
policies rather than manually crafted rules.

4.4 Integrated Workflow

The entire processing process starts when a student tries to complete a task. Depending on the outcome,
the SAKT model rewrites the knowledge of the learner. SBERT examines the left-over tasks to assert
their semantic and cognitive distance between the current knowledge of the learner. DQN model is then
used to select the next best task based on a combination of these signals into one decision that is guided
by reinforcement. Once the student tries the suggested item, all models change their states and the
process repeats itself. Such a closed-loop system guarantees the dynamism, consistency and sensitivity
of personalization to the changing learning process.

5 Experimental Results

5.1 Experimental Environment

All the experiments were performed at a workstation with an Intel Core i9-12900K CPU, 64 GB DDR5
RAM and Nvidia RTX 4090 GPU with 24 GB VRAM. This setup allowed having enough computational
resources to train the SAKT learner model, create SBERT embeddings, and execute reinforcement
learning episodes that addressed the DQN-based recommendation module. The software environment
was composed of Python 3.10, PyTorch 2.2, CUDA 12.1 and HuggingFace Transformers for SBERT.
The reinforcement learning experiments were based on Stable-Baselines3 framework and the clustering
and statistical evaluations were carried out with Scikit-Learn. All the data preprocessing, logging and
model evaluation pipelines were made in a controlled reproducible environment using JupyterLab and
Weights Biases for experiment tracking.

The data utilized in the experiments were 1200 curated learning items (collected on introductory math-
ematics and language courses), and 32,000 student interaction logs (anonymized). The logs had learner
identifier, time, question identifier, correctness label, response time and subject metadata. The dataset
was split into 80% training data and 20% for evaluation data. The content bank items were prepro-
cessed by text normalization, removal of formatting artifacts, and conversion of content bank item to its
respective SBERT embedding.

Vol. 01, Issue 01 9



5.2 Evaluation Methodology

The evaluation of the proposed adaptive learning framework was performed in combination of predictive
accuracy measures, semantic quality measures, and reinforcement learning convergence measures. These
metrics were chosen because they correspond directly to the functional role of the SAKT, SBERT and
DQN models in the system. The SAKT model is designed to estimate learner knowledge progression;
thus, the model performance is best measured using probability-based prediction measures such as
Accuracy, AUC and Cross Entropy Loss, which is used to validate how well the model anticipates
future learner responses. The high-dimensional semantic embeddings of learning materials produced
by the SBERT component are suitable for the use of quality metrics like cosine distance and silhouette
coefficients for the analysis of how well the semantic structure correlates with observed task difficulty.
The DQN model is validated using reward convergence behaviour, which is a function of the ability of the
agent to learn an optimal policy of instruction in a given period of time. These evaluation methods form
a comprehensive and multidimensional evaluation of the framework that ensures that each computational
module is validated based on the intended contribution for which it was designed as part of the adaptive
personalization process.

The predictive performance of the SAKT knowledge model is evaluated through Accuracy:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 , (9)

Area Under the ROC Curve (AUC):

AUC =

∫ 1

0
𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑 (𝐹𝑃𝑅), (10)

and Cross-Entropy Loss:

L = − 1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)] . (11)

The semantic consistency of SBERT embeddings is evaluated using the cosine similarity measure:

cos(𝜃) =
𝑣𝑖 · 𝑣 𝑗
∥𝑣𝑖 ∥∥𝑣 𝑗 ∥

, (12)

and the silhouette coefficient:
𝑆 =

𝑏(𝑖) − 𝑎(𝑖)
max(𝑎(𝑖), 𝑏(𝑖)) , (13)

where 𝑎(𝑖) is the mean intra-cluster distance and 𝑏(𝑖) is the minimum mean inter-cluster distance.

The learning behaviour of the DQN recommendation agent is assessed using the temporal-difference
Bellman update error:

𝛿𝑡 = 𝑟𝑡 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎
′) −𝑄(𝑠𝑡 , 𝑎𝑡 ), (14)

and cumulative episodic reward:

𝑅episode =

𝑇∑︁
𝑡=1

𝑟𝑡 . (15)

5.3 Analysis of Results

Experimental analysis started with grid-search hyperparameter tuning of all the three models. The aim of
this stage was to determine the most stable and high-performing configuration for each of the components
before the full-scale testing. The combinations of learning rates, embedding sizes, attention heads, batch
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sizes and reward discount factors were explored in search for improving play. For SAKT, the search was
based on the aspects of embedding dimensions, number of attention heads, and the dropout rates. In
the case of SBERT, the search combined pooling strategies and batch sizes. For the DQN agent, several
important parameters including learning rate, decay of exploration, update frequency of target network,
and replay buffer size were optimized. The ultimate chosen hyperparameters, which were to be gained
during the grid-search process, are presented in Table 4.

Table 4: Optimal Hyperparameters Obtained from Grid Search
Model Parameter Search Range Optimal Value
SAKT Embedding Dimension {64, 128, 256} 128
SAKT Attention Heads {2, 4, 8} 4
SAKT Dropout Rate {0.1, 0.2, 0.3} 0.2
SBERT Pooling Strategy {mean, max, cls} mean
SBERT Fine-tuning Batch Size {8, 16, 32} 16
DQN Learning Rate {1e-5, 1e-4, 5e-4} 1e-4
DQN Discount Factor (𝛾) {0.85, 0.90, 0.95} 0.95
DQN Exploration Decay {0.99, 0.995, 0.999} 0.995
DQN Replay Buffer Size {5000, 10000, 20000} 10000

After the best hyperparameters were found, the models were tested on the metrics from the previous sub-
section. The SAKT knowledge-tracing model showed good predictive power in terms of high Accuracy
and AUC, which means the self-attention mechanism successfully extracted learning dependencies over
time. The content clusters obtained from the semantic embeddings using SBI generated coherent content
clusters, as shown by silhouette score and cosine-distance correlation with empirical difficulty. In the
meantime, the DQN agent exhibited consistent convergence behaviour with cumulative episodic rewards
growing steadily as the policy improved. The quantitative evaluation results of the three components are
presented in Table 5.

Table 5: Quantitative Evaluation Results for SAKT, SBERT, and DQN Models
Model Metric Result Interpretation
SAKT Accuracy 0.78 High correctness prediction
SAKT AUC 0.84 Strong discrimination ability
SAKT Cross-Entropy Loss 0.41 Low prediction uncertainty
SBERT Silhouette Score 0.62 Well-separated content clusters
SBERT Cosine Difficulty Corr. 0.71 Difficulty aligns with performance
DQN Avg. Episode Reward 8.1 Stable policy convergence
DQN Training Convergence 600 episodes Rapid learning stabilization

On inspecting the results a bit more closely, we can see that there is consistency and mutual reinforce-
ment between the three components. The excellent predictive power of the SAKT model allowed the
mastery level of every learner to be estimated reliably and to provide an accurate basis for downstream
personalization. The attention mechanism was effective in prioritizing conceptually relevant historical
interactions, which enabled SAKT to induce complex dependencies which are missed by simple knowl-
edge tracing methods. As a result, the knowledge-state representation that the DQN agent got was a
stable and expressive one.

The clustering result of the SBERT was further used to validate the semantic structure of the content
repository. Objectives with historical associations of a greater error rate were found in semantically
distant areas of embedding space and indicates that the model reflected cognitive patterns of difficulty
besides linguistic resemblance. This is a property that is necessary, since the DQN agent uses SBERT-
derived distances to approximate the difficulty level of a task to a particular learner. The high correlation
between the cosine difficulty proves that these distances had meaning and were consistent with actual
learner performance.
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The behaviour of the DQN agent learning process revealed a clear shift from exploring to exploiting.
The initial episodes had very unpredictable rewards indicating unstable policy decisions. As the training
progressed, the cumulative trend of the reward became more stable and the agent was persistently
choosing the tasks that maximized the predicted learning gains. It is typical of structured decision setting
to converge around episode 600, and therefore the integration of SAKT and SBERT features allowed the
agent to learn to act in an optimal way.

The synergy between the three components is also emphasized by having an integrated cross-model inter-
pretation. The correct knowledge-state vectors of SAKT served as effective signals to the reinforcement
learning agent, and the structured semantic representation of SBERT caused the DQN not to provide a
sudden and pedagogically unsuitable task suggestion. The net result was a self-paced learning cycle that
effectively promoted the smooth progress in the level of difficulty among the learners as the choices of
tasks not only solved the conceptual preparedness of the learners but also the engagement pattern.

6 Conclusion

This paper proposed an adaptive learning system that combines the SAKT model of learner knowledge
estimation, SBERT model of semantic content representation and a DQN-based policy learner that uses
personalized task suggestions. Experimental analyses showed that combining temporal knowledge mod-
elling, high-dimensional representations, and reward-based task sequencing are effective in personalizing
higher education and that the technology has good predictive performance, consistent semantic grouping
of content, and convergence of reinforcement learning. Although the results are promising, the study
is limited because it used a controlled learning dataset, one learning domain and simulated interaction
traces, which may make the findings less generalizable. The model should be applied to real classroom
deployments, multimodal behavioural signals, and explainable and fairness-sensitive mechanisms that
maximize interpretability, equity and robustness in multigenerational leaner populations in the future.
Comprehensively, the results indicate the promise of AI-based personalization to promote the adaptive
learning processes and enhance student engagement in higher learning institutions.
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